

ALGEBRAIC TOPOLOGY

Prof. Dr. Hana' M. Ali

Lecture 2

HOMOTOPY

Definition:

Two continuous maps $f, g: X \to Y$ from a topological space X into a topological space Y, are said to be homotopic and denoted by f $\approx g$ if, there exists a continuous map $H: X \times I \to Y$, where I = [0,1]is the unit interval, satisfied for every $x \in X$:

- H(x,0) = f(x);
- H(x,1) = g(x).

We call *H* a *homotopy* from *f* to *g* and denoted by $H: f \simeq g$. Note:

To better visualize the geometric content of the definition:

- ✓ Write $H_t(x) = H(x, t)$, for any $(x, t) \in X \times I$.
- ✓ Then $H_t: X \to Y$ is a continuous map s.t. $H_0 = f$ and $H_1 = g$.
- ✓ We usually think of the parameter $t \in I$ as time and the homotopy H_t as a continuous deformation of a map. Prof. Dr. Hong' M. Ali

Geometric visualization of *H*

Fixed $x \in X$, the homotopy $H: f \simeq g$, define a path $p_x: I \to Y$ as; (x, f)

 $p_x(t) = H(x,t)$, for all $t \in I$.

Notice that, p_x is a continuous map as the following commutative diagram:

 $I \xrightarrow{\cong} \{x\} \times I \xrightarrow{i} X \times I$ $p_x \qquad \downarrow H$ $p_x \qquad \downarrow Y$

In fact, $p_x(0) = f(x)$ and $p_x(1) = g(x)$.

Exercise:

The relation \simeq , is an equivalence relation on the set of all continuous maps from a topological space X into a topological space Y. That is;

- ✓ ≃ is reflexive; $(H: f ≃ f, \text{ defined as}; H(x, t) = f(x), \forall (x, t) ∈ X × I).$
- ✓ \simeq is symmetric; (If $H: f \simeq g$, define $G: g \simeq f$ as; G(x, t) = H(x, 1 t), $\forall (x, t) \in X \times I$), and;
- $\checkmark \simeq \text{ is transitive; } (H: f \simeq g \text{ and } G: g \simeq h, \text{ define } F: f \simeq h \text{ as;}$ $F(x, t) = \begin{cases} H(x, 2t); & 0 \le t \le \frac{1}{2} \\ G(x, 2t-1); & \frac{1}{2} \le t \le 1 \end{cases}$

Due \simeq , the equivalence classes are called homotopy classes. Prof. Dr. Hana' M. Ali

Theorem:

The compositions of homotopic maps are homotopic.

Proof: Suppose we have the following continuous maps $f_1, f_2: X \to Y$ and $g_1, g_2: Y \to Z$ such that $H: f_1 \simeq f_2$ and $G: g_1 \simeq g_2$. Wanted, $g_1 \circ f_1 \simeq g_2 \circ f_2$.

Define $F: X \times I \rightarrow Z$ as;

$$F(x,t) = \begin{cases} g_1 \circ H(x,2t); & 0 \le t \le \frac{1}{2}; \\ G(f_2(x),2t-1); & \frac{1}{2} \le t \le 1 \end{cases}$$

As a homework, show that F is continuous. In fact;

$$F(x,0) = g_1 \circ H(x,0) = g_1 \circ f_1(x) \text{ and};$$

$$F(x,1) = G(f_2(x),1) = g_2 \circ f_2(x).$$

Examples:

1. Every two continuous maps $f, g: X \to \mathbb{R}^n$ from a topological space X into the Euclidean space \mathbb{R}^n are homotopic. In fact, $H: f \simeq g$ defined as:

H(x,t) = (1-t) f(x) + t g(x), for all, $(x,t) \in X \times I$.

- 2. If S is a convex subset of \mathbb{R}^n , then every two continuous maps $f, g: X \to S$ are homotopic.
- 3. If Y is indiscrete topological space (i.e. $T = \{\emptyset, X\}$), then every two maps $f, g: X \to Y$ are homotopic.

Thank You Very Much For Lessening

